Stochastics and Statistics Lumpable continuous - time stochastic automata networks

نویسندگان

  • Oleg Gusak
  • Jean-Michel Fourneau
چکیده

The generator matrix of a continuous-time stochastic automata network (SAN) is a sum of tensor products of smaller matrices, which may have entries that are functions of the global state space. This paper specifies easy to check conditions for a class of ordinarily lumpable partitionings of the generator of a continuous-time SAN in which aggregation is performed automaton by automaton. When there exists a lumpable partitioning induced by the tensor representation of the generator, it is shown that an efficient aggregation-iterative disaggregation algorithm may be employed to compute the steady-state distribution. The results of experiments with two SAN models show that the proposed algorithm performs better than the highly competitive block Gauss–Seidel in terms of both the number of iterations and the time to converge to the solution. 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative disaggregation for a class of lumpable discrete-time stochastic automata networks

Stochastic automata networks (SANs) have been developed and used in the last 15 years as a modeling formalism for large systems that can be decomposed into loosely connected components. In this work, we concentrate on the not so much emphasized discrete-time SANs. First, we remodel and extend an SAN that arises in wireless communications. Second, for an SAN with functional transitions, we deriv...

متن کامل

FUZZY INFORMATION AND STOCHASTICS

In applications there occur different forms of uncertainty. The twomost important types are randomness (stochastic variability) and imprecision(fuzziness). In modelling, the dominating concept to describe uncertainty isusing stochastic models which are based on probability. However, fuzzinessis not stochastic in nature and therefore it is not considered in probabilisticmodels.Since many years t...

متن کامل

A Successive Lumping Procedure for a Class of Markov Chains

A class of Markov chains we call successively lumpable is specified for which it is shown that the stationary probabilities can be obtained by successively computing the stationary probabilities of a propitiously constructed sequence of Markov chains. Each of the latter chains has a(typically much) smaller state space and this yields significant computational improvements. We discuss how the re...

متن کامل

A Multi Objective Fibonacci Search Based Algorithm for Resource Allocation in PERT Networks

The problem we investigate deals with the optimal assignment of resources to the activities of a stochastic project network. We seek to minimize the expected cost of the project include sum of resource utilization costs and lateness costs. We assume that the work content required by the activities follows an exponential distribution. The decision variables of the model are the allocated resourc...

متن کامل

Lumpability and Commutativity of Markov Processes

We introduce the concepts of lumpability and commutativity of a continuous time discrete state space Markov process, and provide a necessary and sufficient condition for a lumpable Markov process to be commutative. Under suitable conditions we recover some of the basic quantities of the original Markov process from the jump chain of the lumped Markov process.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003